Cell Worksheet Ch4 BI





Section 4-1 Introduction to the Cell

1. What is a cell?

2. Who was the first person to use a simple microscope and view microscopic organisms?

3.. What English scientist was first to view dead plant cells?

4. State the 3 parts to the cell theory.

5. Tell how each of these scientists contributed to the cell theory — Matthias Schleiden, Theodor Schwann, and Rudolf Virchow.

6. Give 3 ways that cells are not alike.

7. What is one of the longest animal cells?

8. Explain why cells are limited in how large they can grow.

9. The shape of a cell reflects its ______________________. Give an example of this.

10. Define organelle & tell what they do for a cell.

11. What surrounds the outside of all cells?

12. Where is the nucleus of a cell & what does it do?

13. What two characteristics do all eukaryotes share?

14. What type of cell is a bacterium?

15. Where is the genetic information (chromosome) of a bacterium found?

16. What are prokaryotes & are they in the same kingdom as eukaryotes?

Section 4-2 Parts of the Eukaryotic Cell

17. Why can cells not survive if they are totally isolated from their environment?

18. What controls what enters or leaves a cell?

19. Define selectively permeable.

20. Describe the phospholipid make up of cell membranes.

21. Cells are bathed in an aqueous environment. What does this mean?

22. Sketch the lipid bilayer of a cell showing the inside & outside of the cell. Be sure to label all parts of the membrane.

23. What is the difference between peripheral & integral proteins in the cell membrane?

24. What is the purpose of the carbohydrate tails attached to some integral proteins?

25. Do all integral proteins look alike? Explain.

26. Explain the fluid mosaic model of the cell membrane.

27. Name 12 organelles found in cells. (See table 4-2)

28. In what part of a cell are organelles found?

29. What is cytosol & what does it contain?

30. Name 3 organelles found in plant, but not animal cells. (See bottom of table 4-2)

31. What is the function of mitochondria? What energy molecule is made there?

32. Why do liver & muscle cells have more mitochondria than other types of cells?

33. Describe the outer covering of the mitochondria.

34. What are cristae & what is their purpose?

35. Mitochondria are able to reproduce inside cells because they have their own ___________.

36. What organelles are the most numerous inside cells?

37. What two things make up ribosomes & are ribosomes surrounded by membrane like other organelles?

38. Ribosomes are made inside the _______________ of a cell.

39. Ribosomes may remain unattached or __________ in cytosol or attach to what other organelle’s surface?

40. What organic compounds to ribosomes synthesize or make?

41. What does ER stand for & what is the ER in a cell?

42. What is the ER’s function?

43. Name the two types of ER inside cells.

44. What is on the surface of rough ER?

45. Rough ER synthesizes large amounts of _________________ for cells.

46. Give 3 functions of smooth ER.

47. What is the Golgi apparatus?

48. Golgi is a system of ________________ or flattened _____________.

49. How does the Golgi work with the endoplasmic reticulum of a cell?

50. What are lysosomes & what do they do?

51. Name 8 things that the enzymes inside lysosomes digest?

52. In what type of cells are lysosomes common? In what type of cell are they rare?

53. Where is the cytoskeleton & what is its function?

54. What are the two major components of the cytoskeleton?

55. How do microfilaments & microtubules differ from each other?

56. What are spindle fibers & what are they made of?

57. What protein makes up microfilaments?

58. Compare cilia & flagella.

59. What is the purpose of the nuclear matrix?

60. What double membrane surrounds the nucleus?

61. Where is chromatin found & what 2 things is it made of?

62. When a cell is ready to divide, chromatin condenses & coils into _____________________.

63. What is the purpose of DNA inside the nucleus?

64. How do nuclear pores help RNA?

65. Where is the nucleolus found and what is made there?

66. Where is the cell wall in plants found, what is its function, and what is it made of?

67. What are the 2 types of cell walls in plants?

68. What is the difference between the primary & secondary cell walls?

69. What is found inside plant vacuoles?

70. What takes up much of the volume of plant cells? What happens to the other organelles?

71. How are plastids similar to mitochondria?

72. What is found inside of plastids?

73. Name the most familiar plastid & tell its function.

74. What are thylakoids?

Section 4-3 Multicellular Organization

75. Cells are organized into ______________________. Give an example.

76. What is an organ & give an example?

77. What forms organ systems?

78. The digestive system is an organ system. Name the organs that make up this system.

79. All the systems working together make up an ______________________ such as a plant or animal.



Cell Membrane PPT Qs BI


Transport Across Membranes
PowerPoint Questions

Membrane Structure

1. Cell membranes of unicellular organisms are ____________ so the organism can move.

2. What is meant by homeostasis?

3. Homeostasis is also called __________________.

4. How does the plasma membrane help maintain homeostasis?


5. Give 7 functions of the plasma membrane.








6. What is meant by the term selectively permeable?

7. What are cell junctions?

8. Fluid inside the cell is called _________________.

9. Label the plasma membrane (phospholipids, cholesterol, peripheral proteins, integral proteins, cytoskeleton, glcocalyx…)

10. A ________________ bilayer makes up most of the cell membrane.

11. Are phospholipids heads polar or nonpolar? the tails?

12. How many fatty acid chains are in a phospholipid?

13. Describe the heads of a phospholipid.

14. The __________ _____________ ___________ describes the appearance of the cell membrane.

15. Why is the cell membrane said to act like a fluid?


16. What causes the mosaic pattern of the cell membrane when viewed from above?

17. The phospholipid ____________ of the cell membrane allows ____________ molecules to pass through easily, but _________________ do NOT.

18. Materials soluble in __________ can pass easily through the cell membrane.

19. Because the cell membrane is ___________________, only ___________ molecules and larger _______________ molecules can move through easily.

20. List 3 substances that pass easily through the cell membrane.

21. _________, _____________ molecules larger than water, and large __________ molecules do NOT move easily through the phospholipids of the cell membrane.

Types of Membrane Transport

22. Simple ____________ requires NO energy to move things across the cell membrane.

23. With simple diffusion, molecules move from an area of ________ concentration to an area of ______ concentration.

24.Why is diffusion considered a passive process?

25. With diffusion, molecules move by their own natural __________ energy or energy of motion.

26.  Explain what happens to a drop of food coloring put into a beaker of water.


27. When solutes diffuse through a membrane, they move from __________ to _________ concentration.

28. __________ is the diffusion of _________ across a cell membrane.

29. If water potential is HIGH, solute concentration is __________.

30. If water potential is LOW, solute concentration is ___________.

31. Water moves from _________ water potential to ________ water potential.

32. Water diffuses through the pores called _____________ of the cell membrane.

33. Sketch a picture of a cell in an isotonic environment & show the direction of water movement?





34. What is meant by NO NET movement?

35. Sketch a picture of a cell in an Hypotonic environment & show the direction of water movement?





36. Sketch a picture of a cell in an hypertonic environment & show the direction of water movement?





37. Complete the following table:


Direction of Osmosis
Environmental Condition Net Movement of water What happens to cell


38. _____________ occurs whenever water moves out of a cell & the cell shrinks in size.

39. _____________ occurs whenever water moves into the cells causing them to swell and burst.

40. Explain what happens to a red blood cell placed in:

     a. distilled water

     b. a concentrated salt solution

41. Complete the following drawings.

42. Plants prefer ________________ environments, while animal cells do best in _____________ environments.

43. Describe these 3 types of movement across cell membranes.

     a. simple diffusion


     b. facilitated diffusion



    c. active transport


44. Passive transport does _______ require additional energy & moves materials from ________ to _________ concentration.

45. Give 2 examples of passive transport in cells.


46. ___________ diffusion is a type of __________ transport because energy is NOT required.

47. Facilitated diffusion uses _____________ proteins to help move materials from _________ to __________ concentrations.

48. Name 2 materials that move into or out of cells by facilitated diffusion.

49. name 2 types of transport proteins found in cell membranes.

50. Describe channel proteins.

51. How do carrier proteins help move materials across a cell membrane?

52. Channel proteins have an opening or ___________ through which molecules can passively move by _____________ diffusion.

53. Do all carrier proteins extend across the cell membrane?

54. Explain how these carrier proteins move materials across the membrane.


55. Some carrier proteins can change ________ to move materials across the cell membrane.

56. __________ transport requires additional energy to move materials.

57. Active transport uses cellular energy known as _________.

58. Active transport moves materials AGAINST the concentration gradient or from _________ to ___________ concentration.

59. The _______________ pump is an example of active transport.

60. The sodium-potassium pump moves _______ sodium ions out for every ______ potassium ions moved into the cell creating voltage across the cell called the ____________ potential.

61. Moving very large particles out of the cell is called _____________.

62. In exocytosis, wastes are moved out of the cell in ___________ that fuse with the cell membrane.

63. __________ involves moving large particles into the cell.

64. taking in large liquid droplets is called ____________ or “cell drinking”.

65. __________ ____________ endocytosis involves protein ____________ recognizing hormones to help move them into the cell.

66. How does cholesterol get into a cell?

67. “Cell eating” is known as ______________.

68. White blood cells engulfing bacteria is an example of _____________.

69. _____________ is the opposite of exocytosis.



Cell Model Instructions



 Cell Model 


    Construct a 3-dimensional eukaryotic plant or animal cell that includes the organelles listed in the table below. Your cell must show all of the cellular organelles listed on the table. These organelles should be LABELED with straight pin “flags” with the FUNCTION of each organelle written on the back  Make sure that your cell has a FLAT NOT round bottom so it will sit on a table or shelf. 



Cellular Organelles
Cell Membrane Nucleus Nucleolus
Cell Wall (plants) Chromatin Rough ER
Smooth ER Attached Ribosomes Mitochondria
Chloroplast (plant) Lysosome Golgi Bodies
 Vacuole Free Ribosomes Centrioles (animal)



Copyright Pearson Education, Inc.


Copyright Pearson Education, Inc.


Cell PowerPoint Questions


Cell Structure and Function
PowerPoint Questions


1. What is the smallest basic unit of life?

2. What is needed to see most cells?

3. ___________ are made of one cell, while _______ are composed of more than one cell.

4. What are prokaryotic cells?

5. Give an example of a prokaryote.

6.What are eukaryotes?

7. Are plant and animal cells prokaryotes or eukaryotes?

8. Where is DNA found inside prokaryotic cells?

9. What 2 structures surround prokaryotic cells?

10. What organelle, not surrounded by a membrane, is found in prokaryotes & eukarotes?

11. Name the 3 basic cell structures in eukaryotes.


12. __________ are small structures in the cytoplasm that perform specific functions.

13. Give the function of these organelles:

      a. endoplasmic reticulum

      b. Golgi bodies

      c. Nucleolus

      d. Lysosomes

      e. Ribosomes

14.Describe the structure of Golgi bodies.


15. Golgi receive and modify _________ made by the ER.

16. what structures pinch off the ends of the “shipping” side of Golgi to carry cell products to their destination?

17. Lysosomes contain __________ enzymes to break down _______ and worn out ________ parts.

18. Explain how lysosomes are programmed for cell daeth.


19. Where is the nucleolus located?

20. Cells may have _______ to ______ nucleoli.

21. Nucleoli make _____________ that make __________ for the cell.

22. How does smooth ER differ from rough ER?



23. Proteins used in the cell are made by __________ Er, while proteins to be exported are made by _____________ ER.

24. What organelle serves as the powerhouse of the cell?

25. What important process takes place in the mitochondria?

26. Which type of cells would have more mitochondria & why?

27. ___________ like glucose are burned in the mitochondria to release cellular energy known as __________.

28. What surrounds the outside of all cells?

29. In plant cells, a cell __________ surrounds the cell membrane for extra support.

30. What 2 things make up all cell membranes?

31.Cell membranes only allow certain materials into & out of the cell so they are said to be ________________  _____________.

32. The cell ______________ is a living layer around cells, while the cell ________ in plants is nonliving.

33. Jelly-like material inside the cell membrane is called _______________ and is where most ____________________ of the cell take place.

34. Organelles are found inside the cell’s _________________.

35. The ______________ controls the activities of the cell and contains the cell’s _____________.

36. the ______________________ surrounds the nucleus.

37. Chromosomes inside the nucleus contain _____________ that control the cell’s characteristics.

38. Plant cell walls are made of _____________ fibers and are freely ______________.

39. Cell walls resist the loss of _________ from a cell and give _________ & support to the cell.

40. What large organelle takes up most of the space in a plant cell?

41. What is the membrane called that surrounds the central vacuole in plants?

42. Cell __________ is found inside the central vacuole & may contain ____________, proteins, _____________, wastes, and ______________.

43. Give 3 examples of different kinds of plant cells.

44. Name 2 structures found in plant, but NOT animal cells.

45. Animal cells store their carbohydrate energy as ________________ in their cytoplasm.

46. What paired organelle involved with cell division is found in animal but NOT plant cells?

47. Name 6 types of animal cells.


48. List 3 similarities between plant and animal cells.




49. How do plant and animal cells compare in size?

50. How do plant and animal cells compare in shape to each other?

51. Do animal cells have cell walls?

52. Animal cells sore food energy as _____________, while plants store food energy as ____________.

53. Where is the nucleus in:

     a. animal cells?

     b. plant cells?

54. Do animal cells have vacuoles like plant cells? Explain.



55. Light microscopes are also called ____________ microsopes.

56. Light microscopes can magnify objects up to ____________ times.

57. Label the parts of the microscope:


58. Cells of _____________ organisms are specialized to do different jobs.

59. Give 2 examples of specialized cells & their jobs.



60. Similar cells grouped together to do a job are called ____________.

61. ____________ and _________ are 2 types of tissues in animals, while ___________- and ____________ are types of plant tissues.

62. Tissues working together to do a job are known as __________.

63. Give an example of organs found in:

     a. Animals?

     b. Plants?

 64. Several organs & tissues working together to carry out a set of functions is known as a ______________.

65. Name & give the function for 4 animal systems.






66. Systems working together make an _______________.


Cell Size


Cells are limited in how large they can be. This is because the surface area and volume ratio does not stay the same as their size increases. Because of this, it is harder for a large cell to pass materials in and out of the membrane, and to move materials through the cell.
In this lab, you will make cube shaped models to represent cells. The dimension along one side will be doubled with each model. You will then calculate the surface area, volume, and the ratio between the two.


Construction paper
Metric ruler


1. Construct three cell models like the pattern shown. The dimensions of a side will double each time, with the sides being 2 cm, 4 cm, and 8 cm. Fold and tape into cubes with the tabs to the inside. Record the dimensions in the DATA TABLE (the first one is done for you in the table).



DATA TABLE: Cell Size Comparison

Cell Dimensions
Surface Area
Surface area to Volume
1 2 X 2 X 2



2. Calculate the total surface area for each cell model by the following formula:

surface area = (Length X Width) X 6 sides


Record the surface areas in the DATA TABLE.

3. Calculate the volumes for each cell model by the following formula:

volume = length X width X height


Record the volumes in the DATA TABLE.

4. Calculate the surface area-to-volume ratio for each cell model by the following formula:

ratio = surface area


Record the ratio values in the DATA TABLE.
These ratios show how many times larger the surface area is as compared to the volume. Notice that it becomes less than one very quickly.


1. Which model has the largest surface area?

2. Which model has the largest volume?

3. Which model has the largest ratio?

4. To maintain life, and carry-out cellular functions, materials must be able to move into and out of the cell. Also, material needs to be able to move within the cell. What might be the advantage of having a large surface area?



5. What might be the disadvantage of having a large volume?


Structure & Function of the Cells



All Materials © Cmassengale

I. All Organisms are Made of Cells


A. The cell is the basic unit of structure & function


B. The cell is the smallest unit that can still carry on all life processes

C. Both unicellular (one celled) and multicellular (many celled) organisms are composed of cells

D. Before the 17th century, no one knew cells existed

E. Most cells are too small to be seen with the unaided eye


F. In the early 17th century microscopes were invented & cells were seen for the 1st time

G. Anton Von Leeuwenhoek, a Dutchman, made the 1st hand-held microscope & viewed microscopic organisms in water & bacteria from his teeth


Leeuwenhoek’s microscope consisted simply of:

  • A) a screw for adjusting the height of the object being examined
  • B) a metal plate serving as the body
  • C) a skewer to impale the object and rotate it
  • D) the lens itself, which was spherical



H. In 1665, an English scientist named Robert Hooke made an improved microscope and viewed thin slices of cork viewing plant cell walls


I. Hooke named what he saw “cells”

J. In the 1830’s, Matthias Schleiden (botanist studying plants) & Theodore Schwann (zoologist studying animals) stated that all living things were made of cells


K. In 1855, Rudolf Virchow stated that cells only arise from pre-existing cells


L. Virchow’s idea contradicted the idea of spontaneous generation (idea that nonliving things could give rise to organisms)

M. The combined work of Schleiden, Schwann, & Virchow is known as the Cell Theory


Schwann Schleiden Virchow



II. Principles of the Cell Theory


A. All living things are made of one or more cells

B. Cells are the basic unit of structure & function in organisms

C. Cells come only from the reproduction of existing cells


III. Cell Diversity


A. Not all cells are alike

B. Cells differ in size, shape, and function


C. The female egg cell is the largest cell in the body & can be seen without a microscope

relative data-lazy-sizes of cells and their components

D. Bacterial cells are some of the smallest cells & are only visible with a microscope

E.coli Bacterial Cells

E. Cells need surface area of their cell membrane large enough to adequately exchange materials with the environment (wastes, gases such as O2 & CO2, and nutrients)


F. Cells are limited in size by the ratio between their outer surface area & their volume


G. Small cells have more surface area for their volume of cytoplasm than large cells

H. As cells grow, the amount of surface area becomes too small to allow materials to enter & leave the cell quickly enough

I. Cell size is also limited by the amount of cytoplasmic activity that the cell’s nucleus can control

J. Cells come in a variety of shapes, & the shape helps determine the function of the cell (e.g. Nerve cells are long to transmit messages in the body, while red blood cells are disk shaped to move through blood vessels)


IV. Prokaryotes


A. Prokaryotic cells are less complex

B. Unicellular

C. Do not have a nucleus & no membrane-bound organelles


D. Most have a cell wall surrounding the cell membrane & a single, looped chromosome (genetic material) in the cytoplasm


E. Include bacteria & blue-green bacteria


F. Found in the kingdom Monera



V. Eukaryotes


A. More complex cells

B. Includes both unicellular & multicellular organisms


C. Do have a true nucleus & membrane-bound organelles


D. Organelles are internal structures in cell’s that perform specific functions


a. Nucleus b. Chloroplast c. Golgi d. Mitochondria


E. Organelles are surrounded by a single or double membrane


F. Entire eukaryotic cell surrounded by a thin cell membrane that controls what enters & leaves the cell

G. Nucleus is located in the center of the cell

H. The nucleus contains the genetic material (DNA) & controls the cell’s activities

I. Eukaryotes include plant cells, animal cells, fungi, algae, & protists

J. Prokaryotes or bacteria lack a nucleus

K. Found in the kingdoms Protista, Fungi, Plantae, & Animalia



VI. Cell Membrane


A. Separates the cytoplasm of the cell from its environment

B. Protects the cell & controls what enters and leaves


C. Cell membranes are selectively permeable only allowing certain materials to enter or leave

D. Composed of a lipid bilayer made of phospholipid molecules


E. The hydrophilic head of a phospholipid is polar & composed of a glycerol & phosphate group and points to the aqueous cytoplasm and external environment.

F. The two hydrophobic tails are nonpolar point toward each other in the center of the membrane & are composed of two fatty acids

G. When phospholipids are placed in water, they line up on the water’s surface with their heads sticking into the water & their tails pointing upward from the surface.

H. The inside of the cell or cytoplasm is an aqueous or watery environment & so is the outside of the cell. Phospholipid “heads” point toward the water.

I. Phospholipid “tails” are sandwiched inside the lipid bilayer.

J. The cell membrane is constantly breaking down & being reformed inside living cells.

K. Certain small molecules such as CO2, H2O, & O2 can easily pass through the phospholipids


VII. Membrane Proteins


A. A variety of protein molecules are embedded in the cell’s lipid bilayer.

B. Some proteins called peripheral proteins are attached to the external & internal surface of the cell membrane

C. Integral proteins or transmembrane proteins are embedded & extend across the entire cell membrane. These are exposed to both the inside of the cell & the exterior environment.

D. Other integral proteins extend only to the inside or only to the exterior surface.

E. Cell membrane proteins help move materials into & out of the cell.

F. Some integral proteins called channel proteins have holes or pores through them so certain substances can cross the cell membrane.

G. Channel proteins help move ions (charged particles) such as Na+, Ca+, & K+ across the cell membrane

H. Transmembrane proteins bind to a substance on one side of the membrane & carry it to the other side. e.g. glucose


I. Some embedded, integral proteins have carbohydrate chains attached to them to serve as chemical signals to help cells recognize each other or for hormones or viruses to attach



VIII. Fluid Mosaic Model


A. The phospholipids & proteins in a cell membrane can drift or move side to side making the membrane appear “fluid”.

B. The proteins embedded in the cell membrane form patterns or mosaics.

C. Because the membrane is fluid with a pattern or mosaic of proteins, the modern view of the cell membrane is called the fluid mosaic model.


IX. Internal Cell Structure & Organelles of Eukaryotes

A. Cytoplasm includes everything between the nucleus and cell membrane.


B. Cytoplasm is composed of organelles & cytosol (jellylike material consisting of mainly water along with proteins.


C. Eukaryotes have membrane-bound organelles; prokaryotes do not


D. Mitochondria are large organelles with double membranes where cellular respiration (breaking down glucose to get energy) occurs

1. Energy from glucose is used to make ATP or adenosine triphosphate


2. Cells use the ATP molecule for energy

3. More active cells like muscle cells have more mitochondria


4. Outer membrane is smooth, while inner membrane has long folds called cristae


5. Have their own DNA to make more mitochondria when needed

E. Ribosomes are not surrounded by a membrane & are where proteins are made in the cytoplasm (protein synthesis)


1. Most numerous organelle

2. May be free in the cytoplasm or attached to the rough ER (endoplasmic reticulum)

F. Endoplasmic reticulum are membranous tubules & sacs that transport molecules from one part of the cell to another

1. Rough ER has embedded ribosomes on its surfaces for making proteins

2. Smooth ER lacks ribosomes & helps break down poisons, wastes, & other toxic chemicals

3. Smooth ER also helps process carbohydrates & lipids (fats)

4. The ER network connects the nucleus with the cell membrane


G. Golgi Apparatus modifies, packages, & helps secrete cell products such as proteins and hormones

1. Consists of a stack of flattened sacs called cisternae


2. Receives products made by the ER


H. Lysosomes are small organelles containing hydrolytic enzymes to digest materials for the cell

1. Single membrane

2. Formed from the ends of Golgi that pinch off


3. Found in most cells except plant cells

I. Cytoskeleton consists of a network of long protein tubes & strands in the cytoplasm to give cells shape and helps move organelles


1. Composed of 2 protein structures — microtubules, intermediate filaments, & microfilaments


2. Microfilaments are ropelike structures made of 2 twisted strands of the protein actin capable of contracting to cause cellular movement (muscle cells have many microfilaments)

3. Microtubules are larger, hollow tubules of the protein called tubulin that maintain cell shape, serve as tracks for organelle movement, & help cells divide by forming spindle fibers that separate chromosome pairs


Cytoskeleton Element  General Function
Microtubules Move materials within the cell
Move the cilia and flagella
Actin Filaments Move the cell
Intermediate Filaments Provides mechanical support



J. Cilia are short, more numerous hair like structures made of bundles of microtubules to help cells move


1. Line respiratory tract to remove dust & move paramecia

Cross section of Cilia & Flagella

K. Flagella are long whip like tails of microtubules bundles used for movement (usually 1-3 in number)

1. Help sperm cells swim to egg

L. Nucleus (nuclei) in the middle of the cell contains DNA (hereditary material of the cell) & acts as the control center


1. Most cells have 1 nucleolus, but some have several

2. Has a protein skeleton to keep its shape

3. Surrounded by a double layer called the nuclear envelope containing pores

4. Chromatin is the long strand of DNA in the nucleus, which coils during cell division to make chromosomes


5. Nucleolus (nucleoli) inside the nucleus makes ribosomes & disappears during cell division


M. Cell walls are nonliving, protective layers around the cell membrane in plants, bacteria, & fungi

1. Fungal cell walls are made of chitin, while plant cell walls are made of cellulose


2. Consist of a primary cell wall made first and a woody secondary cell wall in some plants


N. Vacuoles are the largest organelle in plants taking up most of the space

1. Serves as a storage area for proteins, ions, wastes, and cell products such as glucose


2. May contain poisons to keep animals from eating them

3. Animal vacuoles are smaller & used for digestion

O. Plastids in plants make or store food & contain pigments to trap sunlight

1. Chloroplast is a plastid that captures sunlight to make O2 and glucose during photosynthesis; contains chlorophyll

a. Double membrane organelle with an inner system of membranous sacs called thylakoids


b. Thylakoids made of stacks of grana containing chlorophyll

2. Other plastids contain red, orange, and yellow pigments

3. Found in plants, algae, & seaweed

X. Multicellular Organization


A. Cells are specialized to perform one or a few functions in multicellular organisms

B. Cells in multicellular organisms depend on each other


C. The levels of organization include:
Cells –> Tissues –> Organs –> Systems –> Organism

D. Tissues are groups of cells that performs a particular function (e.g. Muscle)


E. Organs are groups of tissues working together to do a job (e.g. heart, lungs, kidneys, brain)

F. Systems are made of several organs working together to carry out a life process (e.g. Respiratory system for breathing)

G. Plants have specialized tissues & organs different from animals

1. Dermal tissue forms the outer covering of plants

2. Ground tissue makes up roots & stems

3. Vascular tissue transports food & water

4. The four plant organs are the root, stem, leaf, & flower


H. Colonial organisms are made of cells living closely together in a connected group but without tissues & organs (e.g. Volvox)

Cell Analogy


Cell City Analogy
By Shannan Muskopf

In a far away city called Grant City, the main export and production product is the steel widget. Everyone in the town has something to do with steel widget making and the entire town is designed to build and export widgets. The town hall has the instructions for widget making, widgets come in all shapes and sizes and any sizes and any citizen of Grant can get the instructions and begin making their own widgets. Widgets are  generally produced in small shops around the city, these small shops can be built by the carpenter’s union (whose headquarters are in town hall).

After the widget is constructed, they are placed on special carts which can deliver the widget anywhere in the city. In order for a widget to be exported, the carts take the widget to the postal office, where the widgets are packaged and labeled for export. Sometimes widgets don’t turn out right, and the “rejects” are sent to the scrap yard where they are broken down for parts or destroyed altogether. The town powers the widget shops and carts from a hydraulic dam that is in the city. The entire city is enclosed by a large wooden fence, only the postal trucks (and citizens with proper passports) are allowed outside the city.


Match the parts of the city (underlined) with the parts of the cell.

1. Mitochondria _____________________________________________
2. Ribosomes _____________________________________________
3. Nucleus _____________________________________________
4. Endoplasmic Reticulum _____________________________________________
5. Golgi Apparatus _____________________________________________
6. Protein _____________________________________________
7. Cell Membrane _____________________________________________
8. Lysosomes ____________________________________________________________
9. Nucleolus _____________________________________________

** Create your own analogy of the cell using a different model. Some ideas might be: a school, a house, a factory, or anything you can imagine**



Cell Death

Nobel Prize in Medicine 2002

Genetic Regulation of Organ Development and Programmed Cell Death

Sydney Brenner H. Robert Horvitz John E. Sulston
Sydney Brenner H. Robert Horvitz John E. Sulston


Sydney Brenner, Robert Horvitz and John Sulston’s discoveries concerning the genetic regulation of organ development and programmed cell death have truly opened new avenues for biological and medical research. We have all begun our lives in a seemingly modest way – as the fertilized egg cell, a tenth of a millimeter in size. From this small cell, the adult human being develops, with its hundred thousand billion cells, through cell division, cell differentiation and by formation of the various organs. To only make new cells is however not sufficient, certain cells must also die at specific time points as a natural part of the growth process. Think for example about how we for a short period during fetal life have web between our fingers and toes, and how this is removed by cell death.

The importance of cell differentiation and organ development was understood by many, but progress was slow. This was largely an effect of our complexity, with the large number of cells and many cell types – the forest could not be seen because of all the trees. Could the task to find the genetic principles be made simpler? Were there a species simpler than humans, but still sufficiently complex to allow for general principles to be deduced?

Sydney Brenner in Cambridge, UK, took on the challenge, and his choice was the nematode Caenorhabditis elegans. This may at first seem odd, a spool-shaped approximately 1 millimeter long worm with 959 cells that eats bacteria, but Brenner realized in the early 1960s that it was, what we today would call, “loaded with features”. It was genetically amenable and it was transparent, so that every cell division and differentiation could be directly followed in the worm under the microscope. Brenner demonstrated in 1974 that mutations could be introduced into many genes and visualized as distinct changes in organ formation. Through his visionary work, Brenner created an important research tool. The nematode had made into the inner circle of research.

John Sulston came to Brenner’s laboratory in 1969. He took advantage of that cell divisions could be followed under the microscope and assembled the cell lineage in the worm, showing which cells are siblings, first and second cousins. He found that cell divisions occurred with a very high degree of precision, the cell lineage was identical between different individuals. He also realized that certain cells in the lineage always died at a certain time point. This meant that programmed cell death was not a stochastic process, but rather occurred with a very high degree of precision. During the course of this work Sulston identified the first gene important for the cell death process: nuc-1.

Robert Horvitz came to work with Brenner and Sulston in 1974. Horvitz started a systematic search for genes controlling programmed cell death. He identified the key genes for the cell death process proper. The discovery of these central death genes, ced-3, ced-4 and ced-9, changed the view on programmed cell death from something rather obscure to a process with a strict genetic program. Horvitz also showed that there are human homologues to the death genes in the worm and that those have corresponding functions – the cell death machinery had deep evolutionary roots.

This year’s Nobel Prize celebrates the Joy of Worms. Brenner’s almost prophetic visions from the early 1960s of the advantages of this model organism have been fulfilled. It has given us new insights into the development of organs and tissues and why specific cells are destined to die. This knowledge has proven valuable, for instance, in understanding how certain viruses and bacteria attack our cells, and how cells die in heart attack and stroke.

Cell lineage – from egg to adult

All cells in our body are descendents from the fertilized egg cell. Their relationship can be referred to as a cellular pedigree or cell lineage. Cells differentiate and specialize to form various tissues and organs, for example muscle, blood, heart and the nervous system. The human body consists of several hundreds of cell types, and the cooperation between specialized cells makes the body function as an integrated unit. To maintain the appropriate number of cells in the tissues, a fine-tuned balance between cell division and cell death is required. Cells have to differentiate in a correct manner and at the right time during development in order to generate the correct cell type.

It is of considerable biological and medical importance to understand how these complicated processes are controlled. In unicellular model organisms, e.g. bacteria and yeast, organ development and the interplay between different cells cannot be studied. Mammals, on the other hand, are too complex for these basic studies, as they are composed of an enormous number of cells. The nematode C. elegans, being multi-cellular, yet relatively simple, was therefore chosen as the most appropriate model system, which has then led to characterization of these processes also in humans.

Programmed cell death

Normal life requires cell division to generate new cells but also the presence of cell death, so that a balance is maintained in our organs. In an adult human being, more than a thousand billion cells are created every day. At the same time, an equal number of cells die through a controlled “suicide process”, referred to as programmed cell death.

Developmental biologists first described programmed cell death. They noted that cell death was necessary for embryonic development, for example when tadpoles undergo metamorphosis to become adult frogs. In the human foetus, the interdigital mesoderm initially formed between fingers and toes is removed by programmed cell death. The vast excess of neuronal cells present during the early stages of brain development is also eliminated by the same mechanism.

The seminal breakthrough in our understanding of programmed cell death was made by this year’s Nobel Laureates. They discovered that specific genes control the cellular death program in the nematode C. elegans. Detailed studies in this simple model organism demonstrated that 131 of totally 1090 cells die reproducibly during development, and that this natural cell death is controlled by a unique set of genes.

The model organism C. elegans

Sydney Brenner realized, in the early 1960s, that fundamental questions regarding cell differentiation and organ development were hard to tackle in higher animals. Therefore, a genetically amenable and multicellular model organism simpler than mammals, was required. The ideal solution proved to be the nematode Caenorhabditis elegans. This worm, approximately 1 mm long, has a short generation time and is transparent, which made it possible to follow cell division directly under the microscope.

Brenner provided the basis in a publication from 1974, in which he broke new ground by demonstrating that specific gene mutations could be induced in the genome of C. elegans by the chemical compound EMS (ethyl methane sulphonate). Different mutations could be linked to specific genes and to specific effects on organ development. This combination of genetic analysis and visualization of cell divisions observed under the microscope initiated the discoveries that are awarded by this year’s Nobel Prize.

Mapping the cell lineage

John Sulston extended Brenner’s work with C. elegans and developed techniques to study all cell divisions in the nematode, from the fertilized egg to the 959 cells in the adult organism. In a publication from 1976, Sulston described the cell lineage for a part of the developing nervous system. He showed that the cell lineage is invariant, i.e. every nematode underwent exactly the same program of cell division and differentiation.

As a result of these findings Sulston made the seminal discovery that specific cells in the cell lineage always die through programmed cell death and that this could be monitored in the living organism. He described the visible steps in the cellular death process and demonstrated the first mutations of genes participating in programmed cell death, including the nuc-1 gene. Sulston also showed that the protein encoded by the nuc-1 gene is required for degradation of the DNA of the dead cell.

Identification of “death genes”

Robert Horvitz continued Brenner’s and Sulston’s work on the genetics and cell lineage of C. elegans. In a series of elegant experiments that started during the 1970s, Horvitz used C. elegans to investigate whether there was a genetic program controlling cell death. In a pioneering publication from 1986, he identified the first two bona fide “death genes”, ced-3 and ced-4. He showed that functional ced-3 and ced-4 genes were a prerequisite for cell death to be executed.

Later, Horvitz showed that another gene, ced-9, protects against cell death by interacting with ced-4 and ced-3. He also identified a number of genes that direct how the dead cell is eliminated. Horvitz showed that the human genome contains a ced-3-like gene. We now know that most genes that are involved in controlling cell death in C. elegans, have counterparts in humans.

Of importance for many research disciplines

The development of C. elegans as a novel experimental model system, the characterization of its invariant cell lineage, and the possibility to link this to genetic analysis have proven valuable for many research disciplines. For example, this is true for developmental biology and for analysis of the functions of various signaling pathways in a multicellular organism. The characterization of genes controlling programmed cell death in C. elegans soon made it possible to identify related genes with similar functions in humans. It is now clear that one of the signaling pathways in humans leading to cell death is evolutionarily well conserved. In this pathway ced-3-, ced-4- and ced-9-like molecules participate. Understanding perturbations in this and other signaling pathways controlling cell death are of prime importance for medicine.

Disease and programmed cell death

Knowledge of programmed cell death has helped us to understand the mechanisms by which some viruses and bacteria invade our cells. We also know that in AIDS, neurodegenerative diseases, stroke and myocardial infarction, cells are lost as a result of excessive cell death. Other diseases, like autoimmune conditions and cancer, are characterized by a reduction in cell death, leading to the survival of cells normally destined to die.

Research on programmed cell death is intense, including in the field of cancer. Many treatment strategies are based on stimulation of the cellular “suicide program”. This is, for the future, a most interesting and challenging task to further explore in order to reach a more refined manner to induce cell death in cancer cells.

Using the nematode C. elegans this year’s Nobel Laureates have demonstrated how organ development and programmed cell death are genetically regulated. They have identified key genes regulating programmed cell death and demonstrated that corresponding genes exist also in higher animals, including man. The figure schematically illustrates the cell lineage (top left) and the programmed cell death (below) in C. elegans. The fertilized egg cell undergoes a series of cell divisions leading to cell differentiation and cell specialization, eventually producing the adult organism (top right). In C. elegans, all cell divisions and differentiations are invariant, i.e. identical from individual to individual, which made it possible to construct a cell lineage for all cell divisions. During development, 1090 cells are generated, but precisely 131 of these cells are eliminated by programmed cell death. This results in an adult nematode (the hermaphrodite), composed of 959 somatic cells.

Source: http://nobelprize.org/nobel_prizes/medicine/laureates/2002/press.html


Cell Drawings HRWch4

Cell Drawings

Holt, Rinehart, Winston    Modern Biology

Draw on separate sheets of unlined paper, label drawing & each part, color, and tell the function of EACH LABELED PART (FUNCTION MUST BE WRITTEN NEXT TO THE LABEL) for the following cell drawings:

Page 72    Figure 4.4         Cell Shapes

Page 74    Figure 4.6         Animal Cell

Page 75    Figure 4.7         Bacterial cell (Prokaryote)

Page 76    Figure 4.9         Cell Organization

Page 77    Figure 4.10       Phospholipid

Page 78    Figure 4.11        Cell Membrane

Page 79    Figure 4.12        Nucleus & Nucleolus

Page 80    Figure 4.13        Mitochondria

Page 80    Figure 4.14        Ribosome

Page 81    Figure 4.15        Endoplasmic Reticulum

Page 82    Figure 4.16        Golgi

Page 84    Figure 4.18        Cytoskeleton

Page 85    Figure 4.19        Microtubule

Page 87    Figure 4.21        Plant Cell

Page 89    Figure 4.23        Chloroplast

When all drawings are complete — drawn, colored, labeled, and all functions written — then make a cover sheet with your name and a title and staple this to the top of your drawings. Number the pages in the lower right hand corner.


Cell Exploration Webquest






Every living thing is composed of at least one cell. Bacteria, amoebae, and paramecia are made of one cell and are capable of the activities of life. Organisms made of one cell are unicellular. Most living things are made of more than one cell and are called multicellular. Cells of these organisms function together to accomplish life activities. How many cells do you think make up your body? The human body is made of trillions of cells.

In order to understand how the cell functions in your body, we have to take a look at how your body is organized. Since you are made of matter, and all matter is made of atoms, your body is a collection of atoms. These atoms combined in specific ways to form molecules. Some of the important molecules in your body are proteins, carbohydrates, lipids, salts, water, and nucleic acids. These molecules combined to form the structures that make up a cell. Since each cell is capable of the activities of life, it is the smallest unit of life.

Cells that are similar can function together. These collections of cells are called tissues. Some tissues that you may be familiar with are the muscle tissue that makes up your heart, epithelial tissue that makes up your skin, and connective tissue that holds your body together. Different groups of tissues can be arranged to form organs. Some organs that you may be familiar with are the stomach, intestines, heart, and lungs. For example, the stomach has epithelium to line the outside and inside surfaces for protection and the muscle tissue allows your stomach to squeeze and churn. Groups of organs can work together as an organ system to perform a specific function. The digestive system functions to breakdown and absorb food so that our bodies can use the energy. The pancreas, stomach, intestines, gall bladder, and esophagus are some of the organs that make up the digestive system. There are 13 systems in the human body that function together to produce an organism – YOU!

To review:

The focus of this activity is to learn more about the cell and how it functions in your body.


Cells are very small and you must use a microscope to look at them. Watch this video (click on “start animation”), then look at the size of cells and answer the following questions. To give you an idea about size, the length of a key on the keyboard is about 1 cm.

A. Is a bacterium larger or smaller than an animal cell?
B. How many bacteria can fit into an animal cell?
C. Are plant cells larger or smaller than animal cells?



Since the cell is the fundamental unit of life, it must be capable of independent existence. Some of the necessary life activities are communication, metabolism, protection, and waste disposal. In order to carry out these jobs, the cell has different organs inside of it just like your body has organs. These “tiny organs” are called organelles. Different organs have different jobs and they need the proper supplies of ATP (cellular energy), proteins, oxygen, and other nutrients to carry out their jobs.
There are different types of cells that have different functions, but all cells have some common features. The things common to all cells are a cell membrane (plasma membrane), cytoplasm, and organelles. Take a look at a drawing of an animal cell. (Hold cursor over organelle to identify it.)

To understand how the cell carries out its functions, you should know more about the cytoplasm, cell membrane, and organelles. Click on each structure given in the table below to learn more about each cell part. Complete the table by writing a brief description and function for each part.

The things common to all cells are a cell membrane (plasma membrane), cytoplasm, and organelles. Remember that plant cells have three structures that animal cells don’t.  Now look at a drawing of a plant cell.  (Hold cursor over organelle to identify it.)





        Remember that prokaryotic cells are only found in bacteria!  They’re simpler than eukaryotic cells.  Look at the bacterial cell, and complete the table below:


After you have read about  cells, take the cell quiz. Check your answer after you answer each question.