Lab 10   Physiology of the Circulatory System

Introduction: The human circulatory system is a collection of structures thorough which oxygen and nutrient rich blood flows to all tissues of the body for metabolism and growth, and to remove metabolic wastes. The blood is pumped to these tissues by the heart through a circuit composed of arteries, arterioles, capillaries, venules, and veins. Oxygenated blood is pumped to the tissues from the left side of the heart, whereas deoxygenated blood is pumped to the lungs from the right side of the heart. This circuit where gas exchange takes place within the alveoli of the lung is very important and is known as the pulmonary circuit. When the body is exercised changes can take place in the circulatory system that allow more blood to pass to actively respiring muscle cells and less to nonmuscular tissue. Increased heart rate, arterial pressure, body temperature, and breathing rate also occur during exercise.

Arterial blood pressure is directly dependant on the amount of blood pumped by the heart per minute and the resistance to blood flow through the arterioles. This is an important measurable aspect of the circulatory system and it is measured using a sphygmomanometer. This device has an inflatable cuff that connects to a hand pump and a pressure gauge, graduated in millimeters of mercury, by rubber tubing. The cuff is wrapped around the upper arm and inflated, the person taking the pressure then listens for two sounds and observes the gauge to determine what the blood pressure is. The systolic number is determined by the first noise heard as the cuff is deflated, and the diastolic number is determined by the last distinct noise heard.

Hypothesis: From this experiment it is expected that a subjectís heart rate and blood pressure will change during rest and exercise based on how physically fit they are. If the subject is in good shape the heart rate will not increase significantly and the blood pressure will increase. The opposite is true of someone in poor shape.

Materials: The materials used in this experiment include a blood pressure kit, alcohol swabs, a stopwatch, two depression slides, a cotton ball, four rubber bands, a pipet, a petri dish, a Daphnia culture, a stereomicroscope, and some ice.

Methods:

A. Measuring Blood Pressure: To measure blood pressure, one member of the lab group sat down in a chair, rolled up his sleeve, and then the sphygmomanometer cuff was placed around his upper left arm at heart level. The cuff was then pumped to 200mm Hg, which is safely higher than the blood pressure of the subject. The stethoscope was then placed in the well of the subjectís elbow, where the brachial artery is located, and pressure was slowly released as the taker listened for a pulse. The pressure on the gauge was noted when first sound of Korotkoff was heard, which is the pressure that blood is first able to pass through the artery during systole, representing systolic pressure. The sounds of Korotkoff are heard between the systolic and diastolic blood pressures. The diastolic pressure is the reading of the gauge at the time the sounds of Korotkoff can no longer be heard. The subjectís blood pressure was taken two more times and an average was calculated and recorded in Table 1.

Average Blood Pressure

 

Systolic Pressure

Diastolic Pressure

Age in Years

Men

Women

Men

Women

10

103

103

69

70

11

104

104

70

71

12

106

106

71

72

13

108

108

72

73

14

110

110

73

74

15

112

112

75

76

16

118

116

73

72

17

121

116

74

72

18

120

116

74

72

19

122

115

75

71

20-24

123

116

76

72

25-29

125

117

78

74

30-34

126

120

79

75

35-39

127

124

80

78

40-44

129

127

81

80

45-49

130

131

82

82

50-54

135

137

83

84

55-59

138

139

84

84

60-64

142

144

85

85

65-69

143

154

83

85

70-74

145

159

82

85

B. Physical Fitness Test: The first numbers recorded from this section of the experiment were those of standing vs. resting blood pressure. To do this a member of the lab group had to lie down on a table for five minutes. After five minutes the subjectís blood pressure was taken while he was still lying down and the numbers were recorded in Table 2. The subject remained lying down for another two minutes, stood up, and their blood pressure was taken again. The standing systolic pressure was subtracted from the resting systolic pressure and recorded in Table 2. A chart was used to determine the number of points received by the subject and recorded in Table 3.

The next part of this section is where the subjectís standing heart rate was determined. Taken by the subject was the radial artery pulse by counting the number of beats for 30 seconds. That number was multiplied by 2 to obtain the number of beats per minut