chapter 42 ap obj  circulation

Chapter 42   Circulation & Gas Exchange 

Objectives

Circulation in Animals
1. Describe the need for circulatory and respiratory systems due to increasing animal body size.
2. Explain how a gastrovascular cavity functions in part as a circulatory system.
3. Distinguish between open and closed circulatory systems. List the three basic components common to both systems.
4. List the structural components of a vertebrate circulatory system and relate their structure to their functions.
5. Describe the general relationship between metabolic rates and the structure of the vertebrate circulatory system.
6. Using diagrams, compare and contrast the circulatory systems of fish, amphibians, non-bird reptiles, and mammals or birds.
7. Distinguish between pulmonary and systemic circuits and explain the functions of each.
8. Explain the advantage of double circulation over a single circuit.
9. Define a cardiac cycle, distinguish between systole and diastole, and explain what causes the first and second heart sounds.
10. Define cardiac output and describe two factors that influence it.
11. List the four heart valves, describe their location, and explain their functions.
12. Define heart murmur and explain its cause.
13. Define sinoatrial (SA) node and describe its location in the heart.
14. Distinguish between a myogenic heart and a neurogenic heart.
15. Describe the origin and pathway of the action potential (cardiac impulse) in the normal human heart.
16. Explain how the pace of the SA node can be modulated by nerves, hormones, body temperature, and exercise.
17. Relate the structures of capillaries, arteries, and veins to their functions.
18. Explain why blood flow through capillaries is substantially slower than it is through arteries and veins.
19. Define blood pressure and describe how it is measured.
20. Explain how peripheral resistance and cardiac output affect blood pressure.
21. Explain how blood returns to the heart even though it must sometimes travel from the lower extremities against gravity.
22. Explain how blood flow through capillary beds is regulated.
23. Explain how osmotic pressure and hydrostatic pressure regulate the exchange of fluid and solutes across capillaries.
24. Describe the composition of lymph and explain how the lymphatic system helps the normal functioning of the circulatory system. Explain the role of lymph nodes in body defense.
25. Describe the composition and functions of plasma.
26. Relate the structure of erythrocytes to their function.
27. List the five main types of white blood cells and characterize their functions.
28. Describe the structure of platelets.
29. Outline the formation of erythrocytes from their origin from stem cells in the red marrow of bones to their destruction by phagocytic cells.
30. Describe the hormonal control of erythrocyte production.
31. Outline the sequence of events that occurs during blood clotting and explain what prevents spontaneous clotting in the absence of injury.
32. Distinguish between a heart attack and a stroke.
33. Distinguish between low-density lipoproteins (LDLs) and high-density lipoproteins (HDLs).
34. List the factors that have been correlated with an increased risk of cardiovascular disease.
   
  Gas Exchange in Animals
35. Define gas exchange and distinguish between a respiratory medium and a respiratory surface.
36. Describe the general requirements for a respiratory surface and list a variety of respiratory organs that meet these requirements.
37. Describe respiratory adaptations of aquatic animals.
38. Describe the advantages and disadvantages of water as a respiratory medium.
39. Describe countercurrent exchange and explain why it is more efficient than the concurrent flow of water and blood.
40. Describe the advantages and disadvantages of air as a respiratory medium and explain how insect tracheal systems are adapted for efficient gas exchange in a terrestrial environment.
41. For the human respiratory system, describe the movement of air through air passageways to the alveolus, listing the structures that air must pass through on its journey.
42. Compare positive and negative pressure breathing. Explain how respiratory movements in humans ventilate the lungs.
43. Distinguish between tidal volume, vital capacity, and residual volume.
44. Explain how the respiratory systems of birds and mammals differ.
45. Explain how breathing is controlled in humans.
46. Define partial pressure and explain how it influences diffusion across respiratory surfaces.
47. Describe the adaptive advantage of respiratory pigments in circulatory systems. Distinguish between hemocyanin and hemoglobin as respiratory pigments.
48. Draw the Hb-oxygen dissociation curve, explain the significance of its shape, and explain how the affinity of hemoglobin for oxygen changes with oxygen concentration.
49. Describe how carbon dioxide is picked up at the tissues and deposited in the lungs.
50. Describe the respiratory adaptations of the pronghorn that give it great speed and endurance.
51. Describe respiratory adaptations of diving mammals and the role of myoglobin.

BACK